
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

1

NEHRU COLLEGE OF ENGINEERING AND RESEARCH CENTRE

(NAAC Accredited)

(Approved by AICTE , Affiliated to APJ Abdul Kalam Technological University, Kerala)

Pampady, Thiruvilwamala(PO), Thrissur(DT), Kerala 680 588

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

LAB MANUAL

CS231 DATA STRUCTURE LAB

VISION OF THE INSTITUTION

To mould true citizens who are millennium leaders and catalysts of change through excellence in

education.

MISSION OF THE INSTITUTION

NCERC is committed to transform itself into a center of excellence in Learning and Research in

Engineering and Frontier Technology and to impart quality education to mould technically

competent citizens with moral integrity, social commitment and ethical values.

We intend to facilitate our students to assimilate the latest technological know-how and to

imbibe discipline, culture and spiritually, and to mould them in to technological giants, dedicated

research scientists and intellectual leaders of the country who can spread the beams of light and

happiness among the poor and the underprivileged.

ABOUT THE DEPARTMENT

 Established in: 2002

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

2

 Course offered : B.Tech in Computer Science and Engineering

M.Tech in Computer Science and Engineering

M.Tech in Cyber Security

 Approved by AICTE New Delhi and Accredited by NAAC

 Certified by ISO 9001-2015

 Affiliated to A P J Abdul Kalam Technological University, Kerala.

DEPARTMENT VISION

Producing Highly Competent, Innovative and Ethical Computer Science and Engineering

Professionals to facilitate continuous technological advancement.

DEPARTMENT MISSION

1. To Impart Quality Education by creative Teaching Learning Process

2. To Promote cutting-edge Research and Development Process to solve real world

problems with emerging technologies.

3. To Inculcate Entrepreneurship Skills among Students.

4. To cultivate Moral and Ethical Values in their Profession.

PROGRAMME EDUCATIONAL OBJECTIVES

PEO1: Graduates will be able to Work and Contribute in the domains of Computer Science

 and Engineering through lifelong learning.

PEO2: Graduates will be able to Analyse, design and development of novel Software

 Packages, Web Services, System Tools and Components as per needs and

 specifications.

PEO3: Graduates will be able to demonstrate their ability to adapt to a rapidly changing

 environment by learning and applying new technologies.

PEO4: Graduates will be able to adopt ethical attitudes, exhibit effective communication
 skills, Team work and leadership qualities.

PROGRAM OUTCOMES (POs)

Engineering Graduates will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization to the solution of complex

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

3

engineering problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze

complex engineering problems reaching substantiated conclusions using first

principles of mathematics, natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering

problems and design system components or processes that meet the specified needs

with appropriate consideration for the public health and safety, and the cultural,

societal, and environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and

research methods including design of experiments, analysis and interpretation of data,

and synthesis of the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and

modern engineering and IT tools including prediction and modeling to complex

engineering activities with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to

assess societal, health, safety, legal and cultural issues and the consequent

responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional

engineering solutions in societal and environmental contexts, and demonstrate the

knowledge of, and need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities

and norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or

leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the

engineering community and with society at large, such as, being able to comprehend

and write effective reports and design documentation, make effective presentations,

and give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the

engineering and management principles and apply these to one’s own work, as a

member and leader in a team, to manage projects and in multidisciplinary

environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to

engage in independent and life-long learning in the broadest context of technological

change.

PROGRAM SPECIFIC OUTCOMES (PSO)

PSO1: Ability to Formulate and Simulate Innovative Ideas to provide software solutions for

Real-time Problems and to investigate for its future scope.

PSO2: Ability to learn and apply various methodologies for facilitating development of high

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

4

quality System Software Tools and Efficient Web Design Models with a focus on

performance optimization.

PSO3: Ability to inculcate the Knowledge for developing Codes and integrating

hardware/software products in the domains of Big Data Analytics, Web Applications and

Mobile Apps to create innovative career path and for the socially relevant issues.

COURSE OUTCOME

CO 1 Design and implement programs on 8086 microprocessor

CO 2 To provide solid foundation on interfacing the external devices to the

processor according to the user requirements

CO 3 Design and implement 8051 microcontroller based systems

CO 4 To Understand the concepts related to I/O and memory interfacing

CO 5 To learn about interfacing stepper motor working and its interfacing

CO 6 To learn about generation of waveforms using microcontroller

CO 7 To learn about different types of flag registers and their changes while

performing arithmetic operations

MAPPING OF COURSE OUTCOMES WITH PROGRAM OUTCOMES

CO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12

CO 1 1 3 3 3 3 3

CO 2 2 1 1 2 1 2 2 1 3 2

CO 3 1 1 2 2 3 3 3 3 3 3 3

CO 4 1 2 2 1 3 2

CO 5 3

CO 6 3

CO 7 1 2 2 1 2 3 1 1 3 1

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

5

MAPPING OF COURSE OUTCOMES WITH PROGRAM SPECIFIC OUTCOMES

Note: H-Highly correlated=3, M-Medium correlated=2, L-Less correlated=1

PREPARATION FOR THE LABORATORY SESSION

GENERAL INSTRUCTIONS TO STUDENTS

1. Read carefully and understand the description of the experiment in the lab

manual. You may go to the lab at an earlier date to look at the experimental facility

and understand it better. Consult the appropriate references to be completely

familiar with the concepts and hardware.

2. Make sure that your observation for previous week experiment is evaluated by

the faculty member and you have transferred all the contents to your record before

entering to the lab/workshop.

3. At the beginning of the class, if the faculty or the instructor finds that a student

is not adequately prepared, they will be marked as absent and not be allowed to

perform the experiment.

4. Bring necessary material needed (writing materials, graphs, calculators, etc.) to

perform the required preliminary analysis. It is a good idea to do sample

calculations and as much of the analysis as possible during the session. Faculty help

will be available. Errors in the procedure may thus be easily detected and rectified.

5. Please actively participate in class and don’t hesitate to ask questions. Please

utilize the teaching assistants fully. To encourage you to be prepared and to read

the lab manual before coming to the laboratory, unannounced questions may be

asked at any time during the lab.

 PSO1 PSO2

PSO3

CO1
3 3 -

CO2
3 3 -

CO3
3 3 -

CO4
3 3 -

CO5
3 3 -

CO6
3 3 -

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

6

6. Carelessness in personal conduct or in handling equipment may result in serious

injury to the individual or the equipment. Do not run near moving

machinery/equipment. Always be on the alert for strange sounds. Guard against

entangling clothes in moving parts of machinery.

7. Students must follow the proper dress code inside the laboratory. To protect

clothing from dirt, wear a lab coat. Long hair should be tied back. Shoes covering

the whole foot will have to be worn.

8. In performing the experiments, please proceed carefully to minimize any water

spills, especially on the electric circuits and wire.

9. Maintain silence, order and discipline inside the lab. Don’t use cell phones inside

the laboratory.

10. Any injury no matter how small must be reported to the instructor immediately.

11. Check with faculty members one week before the experiment to make sure that

you have the handout for that experiment and all the apparatus.

AFTER THE LABORATORY SESSION

1. Clean up your work area.

2. Check with the technician before you leave.

3. Make sure you understand what kind of report is to be prepared and due

submission of record is next lab class.

4. Do sample calculations and some preliminary work to verify that the experiment

was successful

MAKE-UPS AND LATE WORK

 Students must participate in all laboratory exercises as scheduled. They must

obtain permission from the faculty member for absence, which would be granted

only under justifiable circumstances. In such an event, a student must make

arrangements for a make-up laboratory, which will be scheduled when the time is

available after completing one cycle. Late submission will be awarded less mark for

record and internals and zero in worst cases.

LABORATORY POLICIES

1. Food, beverages & mobile phones are not allowed in the laboratory at any time.

2. Do not sit or place anything on instrument benches.

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

7

3. Organizing laboratory experiments requires the help of laboratory technicians

and staff. Be punctual.

SYLLABUS

Course

No.

Course Name L-T-P-

Credits

Year of

Introduction

CS231 DATA STRUCTURES LAB 2015

Course Objective:

 To implement basic linear and non-linear data structures and their major operations.

 To implement applications using these data structures.

 To implement algorithms for various sorting techniques.

List of Exercises / Experiments
(For Computer Science and Engineering Branch)

List of Exercises/Experiments : (Minimum 12 are to be done)
1. Implementation of Stack and Multiple stacks using one dimensional array. **
2. Application problems using stacks: Infix to post fix conversion, postfix and pre-fix evaluation,
MAZE problem etc. **
3. Implementation of Queue, DEQUEUE and Circular queue using arrays.
4. Implementation of various linked list operations. **
5. Implementation of stack, queue and their applications using linked list.
6. Implementation of trees using linked list
7. Representation of polynomials using linked list, addition and multiplication of polynomials. **
8. Implementation of binary trees using linked lists and arrays- creations, insertion, deletion and
traversal. **
9. Implementation of binary search trees – creation, insertion, deletion, search
10. Application using trees
11. Implementation of sorting algorithms – bubble, insertion, selection, quick (recursive and non-
recursive), merge sort (recursive and non-recursive), and heap sort.**
12. Implementation of searching algorithms – linear search, binary search.**
13. Representation of graphs and computing various parameters (in degree, out degree etc.) -
adjacency list, adjacency matrix.
14. Implementation of BFS, DFS for each representation.
15.
16. Implementation of various string operations
17. Simulation of first-fit, best-fit and worst-fit allocations.
18. Simulation of a basic memory allocator and garbage collector using doubly linked list.
** mandatory

Course Outcome

 appreciate the importance of structure and abstract data type, and their basic

usability in different applications

 analyze and differentiate different algorithms based on their time complexity.

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

8

 implement linear and non-linear data structures using linked lists.

 understand and apply various data structure such as stacks, queues, trees, graphs,

etc. to solve various computing problems.

 implement various kinds of searching and sorting techniques, and decide when to

choose which technique.

 6. identify and use a suitable data structure and algorithm to solve a real world

problem.

INDEX

EXP

NO
EXPERIMENT NAME

PAGE

NO

1 Stack and Multiple stacks using one dimensional array 9

2 Application problems using stacks 15

3 Various linked list operations 19

4
Representation of polynomials using linked list, addition

and multiplication of polynomials
24

5
Implementation of binary trees using linked lists and

arrays- creations, insertion, deletion and traversal
28

6 sorting algorithms – bubble, insertion,Quick 34

7 searching algorithms – linear search, binary search 36

8 Circular Linked List 38

9 i) Insertion sort

ii) Merge sort

42

10 Dictionary (ADT)using Linked List. 44

11 Hashing 45

12 BFS, DFS for each representation 46

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

9

EXPERIMENT – 1

Stack and Multiple stacks using one dimensional array

AIM

Implementation of Stack and Multiple stacks using one dimensional array

ALGORITHM

Step 1. Here we use 2 arrays min[] and max[] to represent the lower

and upper bounds for a stack

Step 2. Array s[] stores the elements of the stack

Step 3. Array top[] is used to store the top index for each stack

Step 4. Variable ns represents the stack number

Step 5. Variable size represents the size for each stack in an array

Step 6. First we build a function init() to initialize the starting values

Step 7. Then we have a function createstack() to create the stack

Step 8. Function Push() & Pop() are used to push and pop an element to and from the stack

Step 9. Function Display() is used to display the elements in a particular stack

0

PROGRAM

#include <stdio.h>

#include <stdlib.h>/* run this program using the console pauser or add your own getch,

system(“pause”) or input loop */

//min represents the lower bound for a stack

//max represents the upper bound for a stackint s[50],top[50],min[50],max[50];//ns is stack

number

//size is size of the stack

int ns,size;//function to initialize starting values of top,min,max and stack

void init(void)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

10

{

 int i;

 for(i=0;i<50;++i)

 {

 s[i]=min[i]=max[i] = 0;

 top[i]=-1;

 }//end for}//end function//function to create the stack

void createstack()

{

 int i ;

 //min and top of 0th stack will be -1

 //and it’s max will be at index one lesser than it’s sizemin[0]= -1;

 max[0] = size -1;

 top[0]=-1;

 //min and top of 1,2,3,….th stacks

 for(i=1;i<ns;++i)

 {

 min[i]= min[i-1] + size;

 top[i] = min [i];}//end for

 //max of 1,2,3,….th stacks will me min of 2,3,4,….th stack

 for(i=1;i<ns;++i)

 {

 max[i]= min[i+1];

 }//end for

 }//end function//function to push element to stack

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

11

//parameters passed will be the item user wants to push and the stack no. to //push

void push(int ele,int k)

{

 //check for stack overflow

 if(top[k-1]==max[k-1])

 {

 printf(“Stack no %d is full i.e overflow\n”,k);

 return;

 }//end if

 ++top[k-1];

 s[top[k-1]] = ele;

}//end function push//function to pop an element form stack

//parameters passed is the stack no. from which we want to pop an element

void pop(int k)

{

 //check for underflow

 if(top[k-1]==min[k-1])

 {

 printf(“\nStack no %d is empty i.e underflow\n”,k);

 return;}//end if

 //else delete the item

 printf(“%d from stack %d is deleted:\n”,s[top[k-1]],k);

- -top[k-1];

 }//end function pop

 //function to display any stack

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

12

//parameter passed is the stack number to display

void display(int k)

{

 //first check for stack empty condition

 //variable j is used to iterate through the list

 int j;

 if(top[k-1]==min[k-1])

 {

 printf(“\nStack no %d is empty\n”,k);

 return;

 }//end if

 //else display the list

 printf(“\nStack %d →> “,k);

 for(j=min[k-1]+1;j<=top[k-1];++j)

 {

 printf(“%d”,s[j]);

 }//end for

} //end function display//main functionint main() {

 //variable choice,stack number and item to push is initialized

 int ele,ch,skn;

 init();//function call

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

13

 //input the number of stacks

 printf(“\nEnter the number of Stacks\n”);

 scanf(“%d”,&ns);

 //size of each stack

 //size = size of array/number of stacks

 size = 50/ns;

 createstack();//function call

 printf(“\n1.Push\n2.Pop\n3.Display\n4.Exit\n”);

 do{

 //ask for users choice

 printf(“\nEnter your choice : \t”);

 scanf(“%d”,&ch);

 switch(ch)

 {

 case 1: printf(“\nEnter the stack no : \t”);

 scanf(“%d”,&skn);

 printf(“\nEnter the element : \t”);

 scanf(“%d”,&ele);

 push(ele,skn);

 break;

 case 2 : printf(“\nEnter the stack no to pop : \t”);

 scanf(“%d”,&skn);

 pop(skn);

 break;

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

14

 case 3: printf(“\nEnter the stack no to display : \t”);

 scanf(“%d”,&skn);

 display(skn);

 break;

 case 4 : printf(“\nProgram Terminating”);

 break;

 default : printf(“\nInvalid Option\n”);

 }//end switch

 }//end do-while loop

 while(ch!=4);

 return 0;

}

OUTPUT

RESULT AND DISCUSSION

VIVA QUESTIONS

.

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

15

EXPERIMENT – 2

Application problems using stacks

AIM

Application problems using stacks: Infix to post fix conversion, postfix and pre-fix

evaluation, MAZE problem etc.

ALGORITHM

Step 1. Scan the infix expression from left to right.

Step 2. If the scanned character is an operand, output it.

Step 3. Else,

 1 If the precedence of the scanned operator is greater than the precedence of the

operator in the stack(or the stack is empty or the stack contains a ‘(‘), push it.

 2 Else, Pop all the operators from the stack which are greater than or equal to in

precedence than that of the scanned operator. After doing that Push the scanned operator

to the stack. (If you

 encounter parenthesis while popping then stop there and push the scanned operator in

the stack.)

Step 4. If the scanned character is an ‘(‘, push it to the stack.

Step 5. If the scanned character is an ‘)’, pop the stack and output it until a ‘(‘ is

encountered,and discard both the parenthesis.

Step 6. Repeat steps 2-6 until infix expression is scanned.

Step 7. Print the output

Step 8. Pop and output from the stack until it is not empty.

Step 9. Stop

PROGRAM

#include<bits/stdc++.h>

using namespace std;

 //Function to return precedence of operators

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

16

int prec(char c) {

 if(c == '^')

 return 3;

 else if(c == '*' || c == '/')

 return 2;

 else if(c == '+' || c == '-')

 return 1;

 else

 return -1;

}

 // The main function to convert infix expression

//to postfix expression

void infixToPostfix(string s) {

stack<char> st; //For stack operations, we are using C++ built in stack

 string result;

 for(int i = 0; i < s.length(); i++) {

 char c = s[i];

 // If the scanned character is

 // an operand, add it to output string.

 if((c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z') || (c >= '0' && c <= '9'))

 result += c;

 // If the scanned character is an

 // ‘(‘, push it to the stack.

 else if(c == '(')

 st.push('(');

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

17

 // If the scanned character is an ‘)’,

 // pop and to output string from the stack

 // until an ‘(‘ is encountered.

 else if(c == ')') {

 while(!st.empty() && st.top() != '(')

 {

 char temp = st.top();

 st.pop();

 result += temp;

 }

 st.pop();

 }

 //If an operator is scanned

 else {

 while(!st.empty() && prec(s[i]) < prec(st.top())) {

 char temp = st.top();

st.pop();

 result += temp;

 }

 st.push(c);

 }

 }

 // Pop all the remaining elements from the stack

 while(!st.empty()) {

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

18

 char temp = st.top();

 st.pop();

 result += temp;

 }

 cout << result << endl;

}

 //Driver program to test above functions

int main() {

 string exp = "a+b*(c^d-e)^(f+g*h)-i";

 infixToPostfix(exp);

 return 0;

}

OUTPUT

RESULT AND DISCUSSION

VIVA QUESTIONS

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

19

EXPERIMENT – 3

Various linked list operations

AIM

Implementation of various linked list operations

ALORITHM

Insertion

 Step 1: Allocate the space for the new node PTR

 Step 2: SET PTR -> DATA = VAL

 Step 3: IF FRONT = NULL

 SET FRONT = REAR = PTR

 SET FRONT -> NEXT = REAR -> NEXT = NULL

 ELSE

 SET REAR -> NEXT = PTR

 SET REAR = PTR

 SET REAR -> NEXT = NULL

 [END OF IF]

 Step 4: END

Deletion

 Step 1: IF FRONT = NULL

 Write " Underflow "

 Go to Step 5

 [END OF IF]

 Step 2: SET PTR = FRONT

 Step 3: SET FRONT = FRONT -> NEXT

 Step 4: FREE PTR

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

20

 Step 5: END

PROGRAM

#include<stdio.h>

#include<conio.h>

#include<malloc.h> struct node

{

int info;

struct node *next;

};

typedef struct node NODE; NODE *start;

void createmptylist(NODE **start)

{

*start=(NODE *)NULL;

}

void traversinorder(NODE *start)

{

while(start != (NODE *) NULL)

{

printf("%d\n",start->info); start=start->next;

}

}

void insertatbegin(int item)

{

NODE *ptr;

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

21

ptr=(NODE *)malloc(sizeof(NODE)); ptr->info=item;

if(start==(NODE *)NULL) ptr->next=(NODE *)NULL; else

ptr->next=start; start=ptr;

}

void insert_at_end(int item)

{

NODE *ptr,*loc;

ptr=(NODE *)malloc(sizeof(NODE)); ptr->info=item;

ptr->next=(NODE *)NULL; if(start==(NODE*)NULL) start=ptr;

else

{

loc=start;

while(loc->next!=(NODE *)NULL) loc=loc->next;

loc->next=ptr;

}

}

void insert_spe(NODE *start,int item)

{

NODE *ptr,*loc; int temp,k;

for(k=0,loc=start;k<temp;k++)

{

loc=loc->next; if(loc==NULL)

{

printf("node in the list at less than one\n"); return;

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

22

}

}

ptr=(NODE *)malloc(sizeof(NODE)); ptr->info=item;

ptr->next=loc->next;; loc->next=ptr;

}

void main()

{

int choice,item,after; char ch;

clrscr(); createmptylist(start); do

{

printf("1.Insert element at begin \n"); printf("2. insert element at end positon\n");

printf("3. insert specific the position\n"); printf("4.travers the list in order\n"); printf("5.

exit\n");

printf("enter your choice\n"); scanf("%d",&choice); switch(choice)

{

case 1: printf("Enter the item\n"); scanf("%d",&item); insertatbegin(item); break;

case 2: printf("Enter the item\n"); scanf("%d",&item);

insert_at_end(item); break;

case 3: printf("Enter the item\n"); scanf("%d",&item); insert_spe(start,item); break;

case 4: printf("\ntravers the list\n"); traversinorder(start); break;

case 5: return;

}

fflush(stdin);

printf("do your want continous\n"); scanf("%c",&ch);

}while((ch='y')||(ch='y')); getch();

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

23

}

OUTPUT

RESULT AND DISCUSSION

VIVA QUESTIONS

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

24

EXPERIMENT – 4

Representation of polynomials using linked list, addition and multiplication of polynomials

AIM

Representation of polynomials using linked list, addition and multiplication of polynomials

ALORITHM

Step 1: Start

Step 2: Initialize first polynomial

Step 3: Initialize second polynomial

Step 4: perform Polynomial addition

Step 5: Perform Polynomial multiplication

Step 6: Display results

Step 7:Stop

PROGRAM

#include<stdio.h>

#include<conio.h>

#include<malloc.h> struct node

{

int info;

struct node *next;

};

typedef struct node NODE; NODE *start;

void createmptylist(NODE **start)

{

*start=(NODE *)NULL;

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

25

}

void traversinorder(NODE *start)

{

while(start != (NODE *) NULL)

{

printf("%d\n",start->info); start=start->next;

}

}

void insertatbegin(int item)

{

NODE *ptr;

ptr=(NODE *)malloc(sizeof(NODE)); ptr->info=item;

if(start==(NODE *)NULL) ptr->next=(NODE *)NULL; else

ptr->next=start; start=ptr;

}

void insert_at_end(int item)

{

NODE *ptr,*loc;

ptr=(NODE *)malloc(sizeof(NODE)); ptr->info=item;

ptr->next=(NODE *)NULL; if(start==(NODE*)NULL) start=ptr;

else

{

loc=start;

while(loc->next!=(NODE *)NULL) loc=loc->next;

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

26

loc->next=ptr;

}

}

void insert_spe(NODE *start,int item)

{

NODE *ptr,*loc; int temp,k;

for(k=0,loc=start;k<temp;k++)

{

loc=loc->next; if(loc==NULL)

{

printf("node in the list at less than one\n"); return;

}

}

ptr=(NODE *)malloc(sizeof(NODE)); ptr->info=item;

ptr->next=loc->next;; loc->next=ptr;

}

void main()

{

int choice,item,after; char ch;

clrscr(); createmptylist(start); do

{

printf("1.Insert element at begin \n"); printf("2. insert element at end positon\n");

printf("3. insert specific the position\n"); printf("4.travers the list in order\n"); printf("5.

exit\n");

printf("enter your choice\n"); scanf("%d",&choice); switch(choice)

{

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

27

case 1: printf("Enter the item\n"); scanf("%d",&item); insertatbegin(item); break;

case 2: printf("Enter the item\n"); scanf("%d",&item);

 insert_at_end(item); break;

case 3: printf("Enter the item\n"); scanf("%d",&item); insert_spe(start,item); break;

case 4: printf("\ntravers the list\n"); traversinorder(start); break;

case 5: return;

}

fflush(stdin);

printf("do your want continous\n"); scanf("%c",&ch);

}while((ch='y')||(ch='y')); getch();

}

OUTPUT

RESULT AND DISCUSSION

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

28

EXPERIMENT – 5

Implementation of binary trees using linked lists and arrays- creations, insertion, deletion

and traversal

AIM

Implementation of binary trees using linked lists and arrays- creations, insertion, deletion

and traversal

ALORITHM

1. If T is the empty tree, then the empty list is the preorder, the inorder and the

2. Postorder traversal associated with T;

3. If T = [N] consists of a single node, the list [N] is the preorder, the inorder and

the postorder traversal associated with T;

4. Otherwise, T contains a root node n, and subtrees T1,..., Tn: and

5. The preorder traversal of the nodes of T is the list containing N, followed, in

6. Order by the preorder traversals of T1..., Tn;

7. The inorder traversal of the nodes of T is the list containing the inorder

8. Traversal of T1 followed by N followed in order by the inorder traversal of each of

T2,..., Tn.

 9. The postorder traversal of the nodes of T is the list containing in order the postorder

traversal of each of T1,..., Tn, followed by N.

PROGRAM

#include<stdlib.h>

#include<iostream.h>

class node

{

public:

int data;

node*Lchild;

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

29

node*Rchild;

};

class bst

{

int item;

node *root;

public: bst();

void insert_node();

void delete_node();

void display_bst();

void preeorder(node*);

void inorder(node*);

void postorder(node*);

};

bst::bst()

{

root=NULL;

}

void bst:: insert_node()

{

node *new_node,*curr,*prev;

new_node=new node;

cout<<"Enter data into new node";

cin>>item;

new_node->data=item;

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

30

new_node->Lchild=NULL;

new_node->Rchild=NULL;

if(root==NULL)

root=new_node;

else

{

curr=prev=root;

while(curr!=NULL)

{

if(new_node->data>curr->data)

{

prev=curr;

curr=curr->Rchild;

}

else

{

prev=curr;

curr=curr->Lchild;

}

}

cout<<"Prev:"<<prev->data<<endl;

if(prev->data>new_node->data)

prev->Lchild=new_node;

else

prev->Rchild=new_node;

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

31

}

}

//code to delete a node

void bst::delete_node()

{

if(root==NULL)

cout<<"Tree is Empty";

else

{

int key;

cout<<"Enter the key value to be deleted";

cin>>key;

node* temp,*parent,*succ_parent;

temp=root;

while(temp!=NULL)

{

if(temp->data==key)

{ //deleting node with two children

if(temp->Lchild!=NULL&&temp->Rchild!=NULL)

{//search for sucessor

node*temp_succ;

temp_succ=temp->Rchild;

while(temp_succ->Lchild!=NULL)

{

succ_parent=temp_succ;

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

32

temp_succ=temp_succ->Lchild;

}

temp->data=temp_succ->data;

succ_parent->Lchild=NULL;

cout<<"Deleted sucess fully";

return;

}

deleting a node having one left child

if(temp->Lchild!=NULL&temp->Rchild==NULL)

{

if(parent->Lchild==temp)

parent->Lchild=temp->Lchild;

else

parent->Rchild=temp->Lchild;

temp=NULL;

delete(temp);

cout<<"Deleted sucess fully";

return;

}

//deleting a node having one right child

if(temp->Lchild==NULL&temp->Rchild!=NULL)

{

if(parent->Lchild==temp)

parent->Lchild=temp->Rchild;

else

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

33

parent->Rchild=temp->Rchild;

temp=NULL;

delete(temp);

cout<<"Deleted sucess fully";

return;

}

//deleting a node having no child

if(temp->Lchild==NULL&temp->Rchild==NULL)

{

if(parent->Lchild==temp)

parent parent->Lchild=NULL;

else

parent->Rchild=NULL;

temp=NULL;

delete(temp);

cout<<"Deleted sucess fully";

return;

}

}

OUTPUT

RESULT AND DISCUSSION

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

34

EXPERIMENT – 6

sorting algorithms – bubble, insertion,Quick

AIM

Implementation of sorting algorithms – bubble, insertion, quick,

ALGORITHM

Bubble_Sort (A [] , N)

Step 1: Start

Step 2: Take an array of n elements

Step 3: for i=0,………….n-2

Step 4: for j=i+1,…….n-1

Step 5: if arr[j]>arr[j+1] then

Interchange arr[j] and arr[j+1]

End of if

Step 6: Print the sorted array arr

Step 7:Stop

Algorithm:

Selection_Sort (A[] , N)

Step 1 : start Begin

Step 2 : Set POS = K

Step 3 : Repeat for J = K + 1 to N –1

Begin

If A[J] < A [POS]

Set POS = J

Step 4 : End For Swap A [K] End For with A [POS]

Step 5 : Stop

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

35

Quick Sort

Step 1: Pick an element, called a pivot, from the array.

Step 2: Partitioning: reorder the array so that all elements with values less than the pivot

come before the pivot, while all elements with values greater than the pivot come

after it (equal values can go either way). After this partitioning, the pivot is in its final

position. This is called the partition operation.

Step 3: Recursively apply the above steps to the sub-array of elements with smaller values

and separately to the sub-array of elements with greater values.

OUTPUT

RESULT AND DISCUSSION

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

36

EXPERIMENT – 7

searching algorithms – linear search, binary search

AIM

Implementation of searching algorithms – linear search, binary search

ALGORITHM

Algorithm for Linear search

Linear_Search (A[], N, val , pos)

Step 1 : Set pos = -1 and k = 0

Step 2 : Repeat while k < N Begin

Step 3 : if A[k] = val

Set pos = k

print pos

Goto step 5

End while

Step 4 : print “Value is not present”

Step 5 : Exit

Binary_Search (A [], U_bound, VAL)

Step 1 : set BEG = 0 , END = U_bound , POS = -1

Step 2 : Repeat while (BEG <= END)

Step 3 :set MID = (BEG + END) / 2

POS = MID

print VAL “ is available at “, POS

GoTo Step 6

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

37

End if

if A [MID] > VAL then

set END = MID – 1

Else

set BEG = MID + 1

End if

End while

Step 5 : if POS = -1 then

print VAL “ is not present “

End if

Step 6 : EXIT

OUTPUT

RESULT AND DISCUSSION

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

38

EXPERIMENT – 8

Circular Linked List

AIM

Write a program that uses functions to perform the following operations on circular

linked List

(i)Creation (ii) Insertion (iii) Deletion (iv) Traversal

ALGORITHM

Creation

Step 1 - Define a Node structure with two members data and next

Step 2 - Define a Node pointer 'head' and set it to NULL.

Step 3 .Insertion

In a circular linked list, the insertion operation can be performed in three ways. They are

as

follows...

 2.1 Inserting At Beginning of the list

2.2 Inserting At End of the list

2.3 Inserting At Specific location in the list

2.1 Inserting At Beginning of the list

We can use the following steps to insert a new node at beginning of the circular linked list...

Step 1 - Create a newNode with given value.

Step 2 - Check whether list is Empty (head == NULL)

Step 3 - If it is Empty then, set head = newNode and newNode→next = head .

Step 4 - If it is Not Empty then, define a Node pointer 'temp' and initialize with 'head'.

Step 5 - Keep moving the 'temp' to its next node until it reaches to the last node (until

'temp → next == head').

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

39

Step 6 - Set 'newNode → next =head', 'head = newNode' and 'temp → next = head'.

2.2 Inserting At End of the list

We can use the following steps to insert a new node at end of the circular linked list...

Step 1 - Create a newNode with given value.

Step 2 - Check whether list is Empty (head == NULL).

Step 3 - If it is Empty then, set head = newNode and newNode → next = head.

Step 4 - If it is Not Empty then, define a node pointer temp and initialize with head.

Step 5 - Keep moving the temp to its next node until it reaches to the last node in the list

(until temp → next == head).

Step 6 - Set temp → next = newNode and newNode → next = head.

2.3 Inserting At Specific location in the list (After a Node)

We can use the following steps to insert a new node after a node in the circular linked list...

Step 1 - Create a newNode with given value.

Step 2 - Check whether list is Empty (head == NULL)

Step 3 - If it is Empty then, set head = newNode and newNode → next = head.

Step 4 - If it is Not Empty then, define a node pointer temp and initialize with head.

Step 5 - Keep moving the temp to its next node until it reaches to the node after which

we want to insert the newNode (until temp1 → data is equal to location, here

location is the node value after which we want to insert the newNode).

Step 6 - Every time check whether temp is reached to the last node or not. If it is reached

to last node then display 'Given node is not found in the list!!! Insertion not

possible!!!' and terminate the function. Otherwise move the temp to next node.

Step 7 - If temp is reached to the exact node after which we want to insert the newNode

then check whether it is last node (temp → next == head).

Step 8 - If temp is last node then set temp → next = newNode and newNode →

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

40

next = head.

Step 9 - If temp is not last node then set newNode → next = temp → next and temp →

next = newNode.

3. Deletion

In a circular linked list, the deletion operation can be performed in three ways those are as

follows...

3.1 Deleting from Beginning of the list

3.2 Deleting from End of the list

3.3 Deleting a Specific Node

3.1 Deleting from Beginning of the list

We can use the following steps to delete a node from beginning of the circular linked list...

Step 1 - Check whether list is Empty (head == NULL)

Step 2 - If it is Empty then, display 'List is Empty!!! Deletion is not possible' and

terminate the function.

Step 3 - If it is Not Empty then, define two Node pointers 'temp1' and 'temp2' and

initialize both 'temp1' and 'temp2' with head.

Step 4 - Check whether list is having only one node (temp1 → next == head)

Step 5 - If it is TRUE then set head = NULL and delete temp1 (Setting Empty list

conditions)

Step 6 - If it is FALSE move the temp1 until it reaches to the last node.

(until temp1 → next == head)

Step 7 - Then set head = temp2 → next, temp1 → next = head and delete temp2.

3.2 Deleting from End of the list

We can use the following steps to delete a node from end of the circular linked list...

Step 1 - Check whether list is Empty (head == NULL)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

41

Step 2 - If it is Empty then, display 'List is Empty!!! Deletion is not possible' and

terminate the function.

Step 3 - If it is Not Empty then, define two Node pointers 'temp1' and 'temp2' and

initialize 'temp1' with head.

Step 4 - Check whether list has only one Node (temp1 → next == head)

Step 5 - If it is TRUE. Then, set head = NULL and delete temp1. And terminate from

the function. (Setting Empty list condition)

Step 6 - If it is FALSE. Then, set 'temp2 = temp1 ' and move temp1 to its next node.

Repeat the same until temp1 reaches to the last node in the list. (until temp1 →next ==

head)

Step 7 - Set temp2 → next = head and delete temp1.

OUTPUT

RESULT AND DISCUSSION

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

42

EXPERIMENT – 9

i) Insertion sort

ii) Merge sort

AIM

Write a program that implements the following

i) Insertion sort

ii) Merge sort

ALGORITHM

I) Insertion Sort:

Step 1: start

Step 2: for i ← 1 to length(A)

Step 3: j ← i

Step 4: while j > 0 and A[j-1] > A[j]

Step 5: swap A[j] and A[j-1]

Step 6: j ← j - 1

Step 7: end while

Step 8: end for

Step 9: stop

II) Merge sort:

Step 1. Divide the data to be sorted in half and put half on each of two tapes.

Step 2. Merge individual pairs of records from the two tapes; write two-record chunks

alternately to each of the two output tapes.

Step 3. Merge the two-record chunks from the two output tapes into four-record

chunks; write these alternately to the original two input tapes.

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

43

Step 4. Merge the four-record chunks into eight-record chunks; write these alternately

to the original two output tapes.

Step 5. Repeat until you have one chunk containing all the data, sorted --- that is, for

log n passes, where n is the number of records.

Conceptually, merge sort works as follows:

Step 5.1. Divide the unsorted list into two sublists of about half the size.

Step 5.2. Divide each of the two sublists recursively until we have list sizes of length 1,

in which case the list itself is returned.

Step 5.3. Merge the two sublists back into one sorted list.

OUTPUT

RESULT AND DISCUSSION

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

44

EXPERIMENT – 10

Dictionary (ADT)using Linked List.

AIM

Write a program to implement all the functions of a dictionary (ADT)using Linked List.

ALGORITHM

Step 1: Create an instance for dictionary

Step 2: initializing dictionary

Step 3: Creation

Step 4: Searching

Step 5:Deletion

Step 6: Stop

OUTPUT

RESULT AND DISCUSSION

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

45

EXPERIMENT – 11

Hashing

AIM

Write a program to implement all the functions of a hashing

ALGORITHM

Step 1: create a hash function

Step 2: insert a node into the hash table

Step 3: find the hash index for the given key.

Step 4: Searching

Step 5: calculated using the hash function

Step 6: Delete

Step 7:Stop

OUTPUT

RESULT AND DISCUSSION

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

46

EXPERIMENT – 12

BFS, DFS for each representation

AIM

Implementation of BFS, DFS for each representation

ALGORITHM

BFS

Step 1: Take an Empty Queue.

Step 2: Select a starting node (visiting a node) and insert it into the Queue.

Step 3: Provided that the Queue is not empty, extract the node from the Queue and insert

its child nodes (exploring a node) into the Queue.

Step 4: Print the extracted node.

DFS

1. Start by putting any one of the graph's vertices on top of a stack.

2. Take the top item of the stack and add it to the visited list.

3. Create a list of that vertex's adjacent nodes. Add the ones which aren't in the visited

list to the top of the stack.

4. Keep repeating steps 2 and 3 until the stack is empty.

OUTPUT

RESULT AND DISCUSSION

